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1. INTRODUCTION

We denote by C[a, b] the class of continuous functions on the interval
[a, b], and by C1[a, b] the class of continuously differentiable functions on
that interval. We let Ilfll denote the sup norm ofJE C[a, b] on [a, b], w(f; .)
denote the modulus of continuity offon [a, b], and TIn , n ==, I, 2,... , denote
the set of algebraic polynomials of degree less than or equal to n.

We define a functionfE qa, b] to be convex oj order k, or, more simply,
k-convex on [a, b] [concave of order k, or k-concave on [a, b]] if its kth order
differences are nonnegative [nonpositive] on [a, b]; i.e., if

LlN(x) = I (-I)H (ko) l(x + it) ;?; °
i~O .I

whenever x + jt E [a, b],j 0, 1,2,... , k, and t > 0. We note that, according
to our definition, a convex function of order I is simply a nondecreasing
function; a convex function of order 2 is simply an ordinary convex function.

More generaIly, we define a functionfE era, b] to be piecelvise convex oj
order k, or, more simply, piecewise k-convex on [a, b], if we can find a finite
sequence of points {J3i} (i = 0, 1, ... , m) with

a = 130 < 131 < ... < 13", ..'~ b,

such that, within each of the intervals (J3i ,J3i+l)' i 0, I, ... , m - I, lex) is
k-convex or f(x) is k-concave. We caIl such a set of points {J3i} (i =~ 0, 1, ... , m)
a set of crucial points for.f

Note. We note that a set of crucial points need not be unique, for we may
arbitrarily assign f(x) to be k-convex or k-concave on any interval (c, d) C
[a, b] on which iJN(x) =: 0. In the paper, whenever we take {J3i} to be a
set of crucial points for f, we wiIl assume that a fixed signature has been
assigned to iJN(x) in the collection of subintervals S = {(J3i ,J3i+1)} deter
mined by these points.

1 Current address: Department of Mathematics, Emory University, Atlanta, Georgia 30322.

46
0021-9045/78/0221-0046$02.00/0
Copyright © 1978 by Academic Press, Inc.
All rights of reproduction in any fonn reserved.



NEARLY CO-k-CONVEX APPROXIMATION 47

We note also that if {,Bi} is a set of crucial points for f, then Ll/f(x) need
not necessarily alternate in sign on the intervals belonging to the collection S;
we observe that, if k ;? 2, it is possible for a continuous function f to be,
say, k-convex on each of two adjacent intervals belonging to S and yet not be
k-convex on their union.

Again, in the special cases k = I and k = 2, we refer to "piecewise
convex functions of order 1" as being piecewise monotone and "piecewise
convex functions of order 2" as being piecewise convex.

We say that g(x) E C[a, b] is co-k-convex with the piecewise k-convex
function f on [a, b] (with respect to the set {,Bi} (i = 0, I, ... , m)) if g(x) is
k-convex on the intervals (,Bi' ,Bm) on whichf(x) is k-convex and k-concave
on the intervals (,Bi , ,Bi+l) on which f(x) is k-concave. More generally, if
S = {Ii} (i = 1, ... ,j) is a collection of disjoint subintervals of [a, b] on each
of which f(x) is k-convex or k-concave, then we say that g(x) is co-k-convex
withf(x) on S if f(x) and g(x) share the same k-convexity properties on each
interval Ii E S.

In this paper we will be concerned primarily with a type of approximation
known as nearly coconvex approximation of order k, or, more simply, nearly
co-k-convex approximation.

DEFINITION. Suppose that f(x) E era, b] is piecewise convex of order k
on [a, b] and suppose that {,Bi} (i = 0, I, ... , m) is a set of crucial points for f
A sequence of algebraic polynomials {PnCx)} is said to form a nearly co-k
convex approximating sequence to f on [a, b] (with respect to the set {,Bin if,
given any °< € < 0 = t minA,Bi+1 - ,Bi}, there exists N., such that, if
n ;? N., then Pn(x) is co-k-convex with f on S. = {(,Bi + €, ,Bi+l - E)}
(i = 0, 1, ... ,m - I).

This type of approximation was first considered for the case k = 1, and,
in fact, in the special cases k= 1 and k = 2, we refer to such sequences
{Pn(x)} as being nearly comonotone or nearly coconvex approximating
sequences, respectively.

Note. For the sake of simplicity, throughout the remainder of the paper,
whenever we speak of approximating a given piecewise k-convex function
in a nearly co-k-convex fashion, we will assume that we have selected, and
fixed, a particular set of crucial points for this function and that we are
performing our approximation with respect to this particular set of points.

The following result on nearly comonotone approximation is known:

THEOREM A. Given f E C[-1,1], piecewise monotone on [-1, 1], then there
exists a nearly comonotone approximating sequence to f, {Pn(x)}, such that

where C1 > °is an absolute constant.
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The notion of nearly comonotone approximation was first studied by
Newman et al. [8], who showed that Theorem A was valid for a class of
functions known as "proper" piecewise monotone functions. The restriction
thatfbe "proper" was later removed by DeVore in [3]. (For additional results
on nearly comonotone approximation, see also Roulier [9].)

Theorem A was later extended by Myers and Raymon [6] to the case k c= 2:

THEOREM B. Given f E C[-1, 1], piecewise convex on [-I, 1], there exists
a nearly coconvex approximating sequence to f, {Pn(x)}, such that

where C2 > 0 is an absolute constant.

In this paper, we will, in our first theorem, extend Theorems A and B
to obtain Jackson-order nearly coconvex approximation of order k to
piecewise k-convex functions for any positive integer k. In our second
theorem we obtain a Jackson-type theorem for nearly coconvex approxi
mation of order k to piecewise k-convex functions belonging to Cl[-I, 1],
where k is any positive integer. We now formally state our main results:

Let k be any positive integer.

THEOREM 1. Given f E C[-I, I], piecewise k-convex on [-I, I], there
exists a nearly co-k-convex approximating sequence to f, {Pn(x)}, such that

where Ck > 0 is a constant depending only on k.

THEOREM 2. Given fE Cl[-I, I], piecewise k-convex on [-1,1], there
exists a nearly co-k-convex approximating sequence to f, {Pn(x)}, such that

where Ck* > 0 is a constant depending only on k.

2. PRELIMINARY LEMMAS

In proving our theorems we will use polynomials formed by convolution
with an algebraic kernel. In particular, we will use the nth DeVore-j or D-j
kernels, defined to be Vn,;{t), where

(I)
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where P2n(t) is the Legendre polynomial of degree 2n, <Xl,n , <X2.n , ••• , <Xj.n are
the j smallest positive zeros of P2n(t), respectively, and Vn .; is a normalizing
constant chosen so that rVn.;(t) dt = 1.

-)

Defining the nth D-j polynomial of fE C[-t, t] to be

I
l / 2

Qn.;(f; x) = Vn.;(t - x)f(t) dt,
-112

then QnAf; x) E II4(n-;) for each n ~ j.
It is shown in [2, Chap. 6] that if 0 < 0 < t, then

(2)

where Co is a constant depending only onj and o. If, in addition,jE Cl[-t, tJ,
then it is also shown in [2] that

(3)

where co' is a constant depending only on j and o.
. In [6], we obtained certain estimates on the D-I kernel. These proofs

may easily be modified to yield the following important estimates for the
general D-j kernels Vn.;(x):

LEMMA I. Let E > 0 be given and let I > v > 0 be specified. Then there
exists a positive constant d(j), depending only on v and j, such that, for all
n ~ 2(j + l)fE, ifv ~ I x I ~ E, then

The following five lemmas are all well-known results:

LEMMA 2 (Second Mean Value Theorem [11, p. 381]). Iff(x) is a bounded,
monotonic function on [a, b) and (f 1>(x) is integrable over [a, b), then there is a
number gE [a, b) such that

r1>(x)f(x) dx = f(a + 0)r1>(x) dx
n a

+ feb - 0)r1>(x) dx.
~

(Here, f(a + 0) and feb - 0) denote the right-hand limit off at a and the
left-hand limit off at b, respectively.)
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LEMMA 3 [10, pp. 108-109]. Iff(x) is convex on (a, b), thenfis absolutely
continuous on each closed subinterval of (a, b). The right- and left-hand
derivatives off exist at each point of (a, b) and are equal to each other except
on a countable set. The left- and right-hand derivatives are monotone increasing
functions and at each point the left-hand derivative is less than or equal to the
right-hand derivative.

LEMMA 4 [1]. If f(x) is k-convex on the interval [a, b], for some k
then f, 1',r ,... ,f(k~2) exist and are continuous in the open interval (a, b).

LEMMA 5 (Markov's Tnequality [7, p. 141]). If a polynomial p(x) e lln
satisfies, for each a .,,-::; x b,

i p(x)i M,

then p'(X) satisfies, for each a ~ x ~ b,

i p'(x)1 ~ 2Mn2/(b - a).

We prove two final lemmas:

LEMMA 6. Suppose that, for k ;:; 2, f(x) is k-convex on the interval
[a ~.... E, b -+- E] for some E > O. Define, for each n,

lI'n(.f; x) = lI'n(x) = r Vn(x - t)j(t) dt,
a

where Vn.,,(t) ~.~ Vn(t) is the D-k kernel defined by (I). Let x e [a, b]. Then
there exists ~x e [a, b] such that

k

1I,~k)(X) = I [-f(i-l)(b - 0) Vr;k-i)(X - b) -+- f (i-l)(a, 0) V~k-;)(X .- a)]
io·1

+ Vn(x - ~J')[fU,-l)(b - 0) - fUH)(a + 0)]. (4)

Proof We note that, by Lemma 4, fe Ck- 2[a, b], and, by hypothesis,
that f(k-2)(X) is a convex function on (a -~ E, b .t- E) and hence has the
properties guaranteed by Lemma 3. Integrating wn(x) by parts, then differen
tiating with respect to x, we get that

lI'n'(X) =, -feb) Vn(x - b) + f(a) Vn(x - a)

,r Vn(x - t)1'(t) dt.
a
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Repeating this procedure (k - 2) more times gives us that

k

W~H)(X) = I [-f(H)(b) V~k-i)(X - b)
i~2
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+ f (H)(a) V~k-i)(x - a)] + I(x), (5)

where I(x) = f: Vn(x - t)jlk-l)(t) dt.
Since Vr,(x - t) is an algebraic polynomial in (x - t), we may, with

respect to x, differentiate I(x) inside the integral sign. Differentiating, then,
each of the other terms in (5) with respect to x, applying Lemma 2 to ['(x),
and then using the Fundamental Theorem of Calculus to evaluate the
expressions

we get, for the derivative of (5), expression (4).

LEMMA 7. Let f(x) be k-convex on the interval [a, b]for some k ~ 2. Let
o < e < (b - a)/2k be given, and assume that e has been chosen so that f(x)
has no changes inj-convexity,j = 1,2,... , k - 1, within the intervals

I. = [a + e, a + (2k - l)e] and J. = [b -(2k -l)e,b - e].

We know, by Lemma 4, that f',j", ... ,j(k-2) exist and are absolutely continuous
on I. and J•. We claim that

and

If(jJ(b - ke - 0)1 ~ ciw(f; e), j = 1,2,... , k - 1.

Proof It suffices to show the lemma for the point ex = a + ke, and
under the assumption that fli)(X) is nonnegative (and nondecreasing) on I.
for each j = 1, 2,... , k - 1. The proof will be carried out by induction on j.

Consider first the case j = I. Since f(x) is absolutely continuous on I. ,
we have

w(f; e) ~ f(ex + (k - l)e) - f(ex + (k - 2)e)

J
CX+(k-IJ.

= f'(t) dt
cx+(k-2).

~ e . f'(ex + (k - 2)e)

~ e . f'(ex.).
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Suppose now that the result holds for j I, 2, ... , i. In particular, suppose
that we have shown, for j =c. I, 2, ... , i, that

Then, using our assumptions on the f())(x), we have

ciw(f; E) ?:: f(i)(ex. + (k - i - I)E)

?:: flil(ex. + (k - i -- I )E) - j<i)(ex. + (k - i - 2)E)

?:: E . j<i IIl(cx -t- (k - i - 2)E)

?:: E ·f(i+-ll(ex.).

Now, the lemma has been shown under certain very specific assumptions
on the f(j)(x); in the event that the signs of the f(jl on IE are mixed, then,
clearly, by considering, for the appropriate j, intervals of the form
[ex - (k - j)E, ex. - (k - j - I)E] C [a + E, ex.], the proof of Lemma 7 can
easily be modified to yield the general result.

3. PROOFS OF THE THEOREMS

Proof of Theorem I. Without loss of generality we prove the result for f
piecewise k-convex on the interval [0, t] and for k ?:: 2. It suffices to show
the existence of a sequence {Pn(x)} (n ?:: N) satisfying the conclusions of
Theorem 1, with Pn(x) EII1n for each such n, I a fixed positive integer.
We let the crucial points off occur at the points

o = !3o < !3I < ... < 13m = ~;

we let 0 < °< t mini{!3i+1 - !3i} be chosen so that f(x) has no changes in
j-convexity, j = 1,2,... , k, within the intervals (f3i - 0, f3i), i = 1,2,... , m,
and (!3i , f3i + 0), i = 0, 1,... , m - 1. Without loss of generality, we assume
that f(O) = O. Throughout the remainder of the paper we will take cl(k),
clk), ... , dl(k), d2(k), ... , to be positive constants depending only on k. All
norms, unless otherwise stated, will be taken on the interval [0, H

The proof will be carried out in two steps. In the first step we show that,
given 0 < E < to, there exists a sequence of polynomials {Pn •.(x)}, corre
sponding to E, and satisfying:
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(i) Pn..(x) E II4(n--k) for n ;;:: m + k - 1; (6)

(ii) For n sufficiently large, Pn ..(x) is a "good"
approximation to! on [0, tJ; (7)

(iii) Pn.•(x) is co-k-convex with f(x) on the intervals
belonging to Sf = {(f3i + E, f3i+1 - E)} (i = 0,
1, ... , m - 1) for n sufficiently large. (8)

In the second step, by choosing an appropriate sequence {En} -'>- 0, we
will select from the collection of sequences {Pn"n(X)} a single nearly co-k
convex approximating sequence.

Step 1. We extend f(x) to [-t, tJ (and we call the extension f(x) also),
by defining

f(x) = f(O),

= f(x),

=fW,

-t ~ x < 0,

°~ x ~ t,
t < x ~ t·

For each n ;;:: k, we let QnU; x) = Qn(x) be the nth D-k polynomial of the
(extended) function f(x). Then, by (2), we have, (on [0, tD,

(9)

Let °< E < to be given. Define, for each i = 0, 1,... , m - 1, J i =
(f3i + E, f3i+1 - E). We will show, by estimating Q~k)(X) in each of the intervals
J i , that Qn(x) is not "far" from being co-k-convex with! in these intervals.
We will then construct our Pn.•(x) by adding to each Qn(x) a suitable
"correcting" polynomial.

Let x E Ji for some i = 0, 1, ... , m - 1, where we assume that f(x) is
k-convex on Ji . Let Gi = f3i + tE; hi = f3i+1 - tEo We may write

f
1/2

Qn(X) = Vn(x - t) f(t) dt
-112

= 11(x) + 12(x) + Ilx),
where

b j

12•n(x) = 12(x) = f Vn(X - t)f(t) dt,
aj

and
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Then
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(10)

Since I x -- t I ~ iE whenever x E Ji and t ¢ (ai, hi)' it follows from Lemma I
that for all such t and for all n ~ 4(k + I)(E = N k , we have

(II)

Since, by assumption, j(O) = 0, it follows from the sublinearity property of
w(f; .) that

li/ill-t.tl ~ w(f; I) ~ nw(f; n-l).

Thus, for all n ~ N k and for any x E Ji , we have that

I11(x) + Mx)1 ~ dl(k) I!/II W-4k+1(lE)-4k

~ dl(k) n-4k+Zw(f; n-1)(iE)-4k. (12)

Applying Lemma 5 to the polynomial 11(x) + 13(x) on Ji , and using (12),
we get that, for all n ~ N k and for any x E Ji ,

I lik)(x) + l~k)(x)i ~ dz(k) n-Zk+Zw(f; n-1)(tE)-4k. (13)

Also, applying Lemma 5 to the polynomials Vn(x - ai) and Vn(x - hi)'
respectively on J i , and using (11), we have that for n ~ NT.; and for any
XEJi ,

j=O,I, ...,k-l, (14)

and, similarly,

j = 0, I, ... ,k - 1. (15)

By Lemma 7 (with E(2k playing the role of E), we have that

j = I, 2, ... , k - I, (16)
and

Ij(j)(bi - 0)1 ~ (k)i(iE)-j w(f; E), j = 1,2,... , k - 1. (17)

Hence, using (14)-(17), together with the bound we have on 11111, plus the
fact that

w(f; E) ~ nw(f; n-1),

we have that for all n ~ N" ,

Ij(j-l)(ai + 0) v~"-j)(x - ai)1 ~ d3(k) n-Zkw(f; n-1)(iE)-5"', j = 1,2,... , k.

(18)
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Similarly, we have for all n ~ N k ,
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I - f{H\b i - 0) V~k-j)(X - bi)1 ~ d3(k) n-2kw(f; n-1)(tE)-Sk, j = I, 2,... , k.

(19)

Using, now, Lemma 6, with ai and bi playing the roles of a and b, respectively,
and summing over j, j = 1,2,... , k, we can find f" E [ai' bi] such that Iikl(x)
is given by (4). Using the fact thatfllHl is nondecreasing on [ai, bi], together
with the nonnegativity of Vix), we have that

Thus, using (18)-(20) in (4), we have that, for all n ::? N k ,

(21)

Finally, using estimates (13) and (21) in (10), we may assert that for x E Ji ,

where f(x) is k-convex on Ji , and for n ::? N k ,

(22)

Similarly, for x E Ji , where f(x) is k-concave on J i , and for n ::? N k , we
have

(23)

Let p be the number of points (3i for which one of the following occurs:

(i) J;_l is a k-concave interval and J i is a k-convex interval,

or

(ii) J;_l is a k-convex interval and J; is a k-concave interval.

Then °~ p ~ m - 1. Let Zl < Z2 < ... < Zp be those points, if any,
belonging to {(3;} (i = 0, 1,... , m) which satisfy either (i) or (ii). Define, for
each n,

(24)

Ifp = 0, we define

where

a = 1,

= -1,

if each J; is k-convex, i = 0, 1, , m - 1,

if each J; is k-concave, i = 0, I, , m - 1.
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Suppose that p l. We assume, without loss of generality, that p is odd and
that Zj satisfies (i). We define

f
x ftk-l ,t,

Pn,ix) = Qn(x) + Yn ... I pet) dt dt j ... dtkl ,
o 0 '0

where pet) = Il~~l (t - Zi)'

We see immediately that the polynomials {Pn.ix)} satisfy (6). It follows
from (22)-(23) that they satisfy (8). Since

(25)

we see from (9) and from (24) that (7) is satisfied.

Step 2. We now select the desired sequence {PnCx)}: We define t =

(5k +p)-l. For each n satisfying

we define

and we take

2n-t < l8, (26)

(27)

Then {PnCx)} is a nearly co-k-convex approximating sequence to f on [0, U
for, choosing E < l8, then, by Step 1, Pn(x) is co-k-convex withf(x) on the
intervals (f3i + En , f3i+1 - En), i = 0, 1,... , m - 1, hence on the intervals
(f3i + E, f3iH - E), i = 0, 1, ... , m - 1, for all n satisfying (26) and also

Finally, using (9), (24), and (27) in (25), we have that

Q.E.D.

Proof of Theorem 2. Again, without loss of generality, we work on the
interval [0, ill. Using (3), the proof of Theorem 2 is almost identical to that
of Theorem 1. We extend f(x) E el[o, ill to [-1, tl in a continuously
differentiable fashion by defining the (extended) functionf(x) on the intervals
[-t, 0] and [l, l], respectively, to be those line segments which interpolate
f(x) at the points x = 0 and x = i with respective slopes 1'(0) and 1'(i).

Without loss of generality we may assume, for all k, that f(O) = 0, and
that there exists p, E [-l, t] such that 1'(p,) = 0. (For ifl' were, say, strictly
positive on [-t, t], then, letting m = min1'(x), ~l ~ x ~ t, we need
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only consider the function g(x) = f(x) - mx on the interval [-t, H)
Under these assumptions we get, on the interval [-t, H

II/II :'( II!' II :'( w(f'; I) :'( nw(f'; n-1
). (28)

If k ;;?: 2, we may show, under the hypotheses of Lemma 7, using the same
notation, and employing a proof which is almost identical to that of Lemma 7,
that

1fU)(a + h + 0)1 :'( (E:)-Hl w(f'; E)

and

j = 2, 3,... , k - 1. (29)

Now, using the estimates (3), (28), and (29), and working, as before, with
the D-k polynomials of the (extended) function/in the case k ;;?: 2 (and with
the D-2 polynomials of / in the case k = 1), our result follows almost
exactly as before. Q.E.D.

4. CONCLUDING REMARKS

We note that Theorems A and B quoted in the Introduction are actually
true in a stronger form. Namely, given a piecewise monotone or a piecewise
convex function / E C[a, b], it is possible to show the existence of respective
"strong" nearly comonotone or "strong" nearly coconvex sequences {Pn(x)}
which approximate / to within the Jackson-order estimates, where we define
the term "strong nearly co-k-convex approximating sequence" in the
following way:

DEFINITION. A sequence of algebraic polynomials {Pn(x)} is said to form a
strong nearly co-k-convex approximating sequence to a piecewise k-convex
function/E C[a, b] (with respect to the crucial points a = 130 < 131 < ... <
13m = b), if, given any 0 < E < ;) (;) = t mini{f3i+l - f3i}), there exists N.
such that if n ;;?: N., the polynomials Pn(x) are co-k-convex with / in the
intervals {(a, 131 - E), (f3i + E, f3i+l - E), (13m + E, b)} (i = 1,2,... , m - 2).

These stronger theorems on nearly comonotone and nearly coconvex
approximation yield, in particular, as corollaries, the Lorentz-Zeller results
on monotone approximation to monotone functions [4,5], as well as the
Lorentz-Zeller analogs for convex approximation to convex functions [6].
We remark here that the "strong" versions of Theorems 1 and 2 can be
shown as well for the case k == 3. The proofs of these stronger theorems,
along with several related results, will appear in a subsequent paper.
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